

Eklavya University Damoh MP

M.Sc. Final

Chemistry

Session 2020-21 onwards

School of Basic & Applied Science

EKLAVYA UNIVERSITY, DAMOH (M.P.)

Scheme of Examination M.Sc. (Chemistry) II Year (Final)

/For batch admitted in Academic Session 2023-24/

Subject wise distribution of marks and corresponding credits

			ode Paper Name		Maximum Marks Allotted									Contact							
S.	Subject Name	Subject Code							Tł	ieor	y Slo	t			Pra	ctical Slot	Total	otal Periods			Total
					Final Yearly			Half Yearly .			_	Quiz/ Assignment/			Marks			Р	Credi		
1	Common			P1	P2	P3	P4	P5	P1	P2	P3	P4	P5	Attendence	Exam	Sessional			_		
1	Common	MPROJ201201	Project (Beyond Class Room)														150			24	24
		MCHEM20Y201	Application of Spectroscopy Photochemistry and Solid State Chemistry (Paper -I)	60					30					10			100	4			4
		MCHEM20Y202	Environmental Chemistry (Paper II)		60					30				10			100	4			Total Credits
		MCHEM20Y203	Elective Paper-III (Group-I): Organotransition Metal Chemistry, Bioinorganic and Supramole-cular Chemistry, Group -I, 3A (Optional)			60					30			10	Practical Slot Total Marks Per week Total Credits End Eam Lab Work/ Sessional Total Marks Total Credits Total Credits Image: I						
	MCHEM20Y203 and Polymers, Group -I, 4A (Optional) MCHEM20Y205 Elective Paper -V (Group-II): - Organic S Group -II, 3B (Optional) MCHEM20Y206 Elective Paper-VI (Group-II): Heterocyclic and Chemistry of Natural Products, Group (Optional)	Elective Paper -IV (Group-I): Photoinorganic Chemistry and Polymers , Group -I, 4A (Optional)			60					30			10			100	4			4	
		MCHEM20Y205	Elective Paper - V (Group-II): - Organic Synthesis, Group -II, 3B (Optional)				60					30		10			100	4			4
2		MCHEM20Y206					60					30		10			100	4			4
		MCHEM20Y207	Elective Paper - VII (Group-III): Chemical Dynamics , Group -III, 3C (Optional)					60					30	10			100	4			
		MCHEM20Y208	Elective Paper -VIII (Group-III):Electrochemistry, Group -III, 4C (Optional)					60					30	10			100	4			
		MCHEM20Y209	Paper-I & II Practical-I (Compulsory for all)												60 40	100			4		
MCHEM20Y210 Inorganic Chemistry Practical-II, Group -I (Optional)			60	40	100			4													
		MCHEM20Y211	Organic Chemistry Practical-II, Group -II (Optional)												60	40	100			1	
		MCHEM20Y212	Physical Chemistry Practical-II, Group -III (Optional)												60	40	100			4	\$

Familiarization to Dept./Branch & Innovations.

hodr

2M

Class			M.Sc. Chemistry (FINAL)
Semester/Year Subject & Subject Code		Year	ll Year
		Subject Code	Chemistry - MCHEM20Y201
Paper			Application of Spectroscopy Photochemistry and Solid State Chemistry Paper- I
Max. I	Mark	S	100
Credit Total Credits		Total Credits	
LT	Р		-
4 0	0	4	

- Imparting knowledge in the theory and applications of various spectroscopic techniques which are very important characterization techniques for different fields of science.
- To facilitate the understanding of the Ultraviolet and Visible spectroscopy ,Infrared Spectroscopy ,Instrumentation and Sample handling.
- To analyze the different aspects of NMR spectroscopy and Mass Spectrometry.
- Imparting knowledge in the synthesis and mechanisms of various reactions related to the synthesis by cycloaddition, photochemistry.
- Correlating the structure and property of materials for transport, optical and dielectric properties.

Course Outcome:

At the end of the course, learners will be able to:

- Acquire in depth knowledge in Vibrational Spectroscopy ,Electron Spin Resonance Spectroscopy ,Nuclear Magnetic Resonance of Paramagnetic Substances and Mossbauer Spectroscopy.
- Identify functional group of the compound by Ultraviolet and Visible spectroscopy.
- To enable the interpretation of spectra of unknown compounds by NMR spectroscopy and Mass Spectrometry
- Understand the concepts related to light induced organic synthesis, mechanisms and the functions of various reagents.
- Gets a general understanding of the Solid State Reactions and semiconductors and their applications.

Student Learning Outcomes (SLO):

The students will acquire knowledge to

- Analyze and quantify any given organic compound using spectroscopic method
- Having a clear understanding about Electronic spectra.
- Analyzing and interpreting spectral data of any unknown compound by Nuclear Magnetic Resonance Spectroscopy
- Having a clear understanding about the photochemical reactions of industrial significance.
- Identify appropriate material for a given application in conducting, magnetic, optical and dielectric applications.

New

	Syllabus	Periods
UNIT - I	 Vibrational Spectroscopy Symmetry and shapes of AB2, AB3, AB4, AB5 and AB6, mode of bonding of ambidentate ligands, ethylenediamine and diketonato complexes, application of resonance Raman spectroscopy particularly for the study of active sites ofmetalloproteins. Electron Spin Resonance Spectroscopy Hyperfine coupling, spin polarization for atoms and transition metal ions, spin-orbit coupling and significance of g-tensors, application to transition metal complexes (having one unpaired electron) including biological systems and to inorganic free radicals such as PH4, F2 -and (BH3) Nuclear Magnetic Resonance of Paramagnetic Substances in Solution The contact and Pseudo contact shifts, factors affecting nuclear relaxation, some applications including biochemical systems, an overview of NMR of metal nuclide with emphasis on 195Pt and 119 SnNMR. Mossbauer Spectroscopy Basic principles, spectral parameters and spectrum display. Application of the technique to the studies of (1) bonding and structures of Fe+2 and Fe+3 compounds including those of intermediate spin, (2) Sn+2 Sn+4 compounds nature of M-L bond, coordination number, structure and (3) detection of oxidation state and inequivalent MB atoms. 	15
UNIT - II	Ultraviolet and Visible spectroscopy Various electronic transitions (185-800 nm),Beer-Lambert law, effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, conjugated polyenes, Fieser Woodward rules for conjugated dienes and carbonyl compounds, ultraviolet spectra of aromatic compounds. Steric effect in biphenyls. Infrared Spectroscopy Instrumentation and Sample handling Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of hydrogen bonding and solvent effect on vibrational frequencies, overtones, combination bands and fermi resonance. Optical Rotatory Dispersion(ORD) and Circular Dichroism (CD)Definition, deduction of absolute configuration, octan rule	15

	Nuclear Manuella Dana O	
	Nuclear Magnetic Resonance Spectroscopy General introduction and definition, chemical shift, spin-spin interaction, shielding mechanism, mechanism of measurement, chemical shift values and	
	correlation for protons bonded to carbon (aliphatic, olefinic, aldehydic and aromatic) and other nuclei (alcohols, phenols, enols, carboxylic	
UNIT - III	acids, amines, amides &mercapto), chemical exchange, effect of deuteration, complex spin spin interaction between two, three, four and five nuclei (first order spectra) virtual coupling, Stereochemistry, hindered rotation, Karplus curve-variation of coupling constant with dihedral angle. Simplification of complex spectranuclear magnetic double resonance, NMR shift reagents, solvent effects. Fourier transform technique, nuclear overhauser effect (NOE).	
	Carbon-13 NMR Spectroscopy General considerations, chemical shift (aliphatic olefinic, alkyne, aromatic, heteroaromatic and carboynl carbon), coupling constants. Two dimension NMR spectroscopy-COSY, NOESY, DEPT, INEPT, APT and INADEQUATE techniques. Mass Spectrometry Introduction ion production E1, C1 FD and FAB, factors affecting fragmentation, ion analysis, ion abundance Mass spectral fragmentation of organic compounds, common functional groups, molecular ion peak, metastable peak. McLafferty rearrangement. Nitrogen rule. High resolution mass spectrometry. Example of mass spectral fragmentation of organic compounds with respect to their	15
	Photochemical Reactions Interaction of electromagnetic radiation with	
	of excitations, fate of excited molecule, quantum yield, transfer of excitation energy, actinometry. Determination of Reaction Mechanism Classification, rate constants and life times of reactive energy state determination of rate constants of reactions. Effect of light intensity on the rate of photochemical reactions. Types of photochemical reactions- photo dissociation, gas-phase photolysis.	
UNIT - IV	Miscellaneous Photochemical Reactions Photo-Fries reactions of anilides, Photo- Fries rearrangement. Barton reaction. Singlet molecular Oxygen reaction. Photochemical formation of smog. Photodegration of polymers. Photochemistry of vision. Photochemistry of Alkene Intramolecular reactions of the olefinic bond- geometrical	15
	isomerism, cyclisation reactions, rearrangement of 1,4- and 1,5-dienes. Photochemistry of Carbonyl Compounds Intramolecular reactions of carbonyl compounds-saturated, cyclic and acyclic, β , γ unsaturated and α , β unsaturated compounds, cyclohexadienones. Intermolecular cyloaddition reactions-dimerisations and oxetane formation. isomerism, cyclisation reactions, rearrangement of 1,4- and 1,5-dienes. Photochemistry of Carbonyl Compounds Intramolecular reactions of carbonyl compounds-saturated, cyclic and acyclic, β , γ unsaturated and α , β unsaturated compounds, cyclohexadienones. Intermolecular cyloaddition reactions-dimerisations and oxetane formation. Photochemistry of Aromatic Compounds Isomerisations, additions and substitutions.	
Q	W Dur Nvellu	
	Nuelu	

3

Solid State Reactions General principles, experimental procedure, coprecipitation as a precursory to solid state reactions, kinetics of solid state reactions. Crystal Defects and Non-Stoichiometry Perfect and imperfect crystals, intrinsic and extrinsic defects-point defects, line and plane defects, vacancies-Schottky defects and Frenkel defects. Thermodynamics of Schottky and Frenkel defect formation, colourcentres, non-stoichiometry and defects. Electronic Properties and Band Theory Metals, insulators and semiconductors, electronic structure of solidsband theory, band 15 UNIT - V structure of metals, insulators and semiconductors, Intrinsic and extrinsic semiconductors, doping semiconductors, p-n junctions, super conductors. Optical properties-Application of optical and electron microscopy. Magnetic Properties-Classification of materials : Effect of temperature calculation of magnetic moment, mechanism of ferro and anti ferromagnetic ordering super exchange. Organic Solids Electrically conducting solids. organic charge transfer complex, organic metals, new superconductors.

Reference Books:

- Physical Methods for Chemistry, R.S. Drago, Saunders Compnay.
- Infrared and Raman Spectral: Inorganic and Coordination Compounds K. Nakamoto, Wiley.
 Progress in Inorganic Chamieland Coordination Compounds K. Nakamoto,
- Progress in Inorganic Chemistry vol., 8, ed., F.A. Cotton, vol., 15 ed. S.J. Lippard, Wiley.
- Transition Metal Chemistry ed. R.L. Carlin vol. 3 Dekker.
 Inorganic Electronic Spectroscience and a sector of the se
- Inorganic Electronic Spectroscopy, A.P.B. Lever, Elsevier.
 NMR_NOR_EDD and Max 1
- NMR, NQR, EPR and Mossbauer Spectroscopy in Inorganic Chemistry, .V. Parish, Ellis Haywood.
- Spectrometric Identification of Organic Compounds, R.M. Silverstein, G.C. Bassleradn T.C. Morrill, John Wiley.

Wel / Dur Node

Class		M.Sc. Chemistry (FINAL)
Semes	ster/Year	II Year
Subjec	t & Subject Code	Chemistry - MCHEM20Y202
Paper		ENVIRONMENTAL CHEMISTRY Paper II
Max. M	larks	100
Credi	t Total Credits	
L T 4 0	P 4	
	Learning the differer Learning the differer Understanding the ir the Environmental D Identifying the differer Course Outcome: At the end of the cou To understand the ty decomposition . To learn the students ToAnalyze water qua To familiarize the var Environmental Enviro	ent industrial pollutants and their prevention methods. urse, learners will be able to: upes atmospheric constituents and Mechanism of photochemical s about air pollution analysis and its control . ality through different analytical methods. rious types the micro and macronutrients of soil , soil pollution and
S F E th A re E	Evaluate the industria nem. Nalyze different para eduction. Ible to know about th invironmental Disast	standing of the Atmospheric Chemistry. al pollutants, understand their effects and adopt methods to reduce ameters in water quality monitoring and adopt methods for their me micro and macronutrients of soil, soil pollution and Environmental

Unit	Syllabus	Period	3
UNIT - I	Atmosphere Atmospheric layers, Vertical temperature profile, heat/radiation budget of theearth atmosphere systems. Biogeochemical cycles of carbon, nitrogen sulphur, phosphorus oxygen. Residence times Atmospheric Chemistry Sources of trace atmospheric constituents : Nitrogen oxides, Sulphur dioxide and other sulphur compounds, carbon dioxides, chlorofluorocarbons and other halogen compounds, methane and other hydrocarbons. Mechanism of photochemical decomposition of NO2 and formation of ozone atoms, hydroxyl, hydroperoxy and organic radicals and hydrogen peroxide and their reactions	, 15	
UNIT - 11	Air Pollution Air pollutants and their classifications. Aerosols-sources, size distribution and effect on visibility, climate and health. Acid Rain Definition, Acid rain precursors and their aqueous and gas phase atmospheric oxidation reactions. Damaging effects on aquatic life, plants, buildings and health. Monitoring of SO2 and NOx. Acid rain control Stratospheric Ozone Depletion Mechanism of Ozone formation, Mechanism of catalytic Ozone depletion, Discovery of Antarctic Ozone hole and Role of chemistry and meteorology. Control Strategies. Green House Effect Terrestrial and solar radiation Spectra, Major green housegases and their sources and Global warming potentials. Climate change and consequences. Urban Air Pollution Exhaust emissions, damaging effects of carbon monoxide. Monitoring of CO. Control strategies.	15	
	Aquatic Chemistry and Water Pollution Redox chemistry in natural waters. Dissolvedoxygen, biological oxygen demand, chemical oxygen demand, determination of DO, BOD and COD. Aerobic and anaerobic reactions of organic sulphur and nitrogen compounds in water. Acid-base chemistry of fresh water and sea water. Aluminum, nitrate and fluoride in water. Eutrophication .Sources of water pollution. Treatment of waste and sewage. Purification of drinking water, techniques of purification and disinfection.	15	C
JNIT - IV	Soil and Environmental Disasters Composition, micro and macronutrients, soil pollution by fertilizers, plastic and metals. Methods of re-mediation of soil. Bhopal gas tragedy, Chernobyl, three mile island, Minimata Disease, Sevoso (Italy), London smog.	15	
JNIT - V	Industrial Pollution : Cement, sugar, distillery, drug, paper and pulp, thermal power plants, nuclear power plants. Metallurgy, polymers, etcradionuclide analysis, disposal of wastes and their managements. CE BOOKS :	15	

- Environmental Chemistry, Colin Baird, W.H. Freeman Co. New York, 1998,
- Chemistry of Atmospheres, R.P. Wayne, Oxford.
- Chemistry of Atmospheres, R.P. Wayne, Oxford.
- Environmental Chemistry, S.E. Manahan, Lewis Publishers .
- Introduction to Atmospheric Chemistry, P.V. Hobbs, Cambridge.

6

G

Erge

20'S

School of Basic and Applied Sciences

Class		M.Sc. Chemistry (Final)					
Semest	er/Year	Il Year					
Subject	& Subject Code	Chemistry - MCHEM20Y205					
Paper		ELECTIVE PAPER- V (Group-II): - Organic Synthesis					
Max. M	arks	100					
Credit	Total Credits						
L T 4 0	P 4						
	Course Objectives:	e in the theory and applications of various organometallic reagents.					
•	Metallocenes,Nonbe To introduce advance	ensive knowledge on name reactions and rearrangements and enzenoid Aromatics and Polycyclic Aromatic Compounds. ced level study in the disconnection approach. s "hands-on" in qualitative inorganic semi-micro analysis and blexes.					
•	catalysts. Understanding basi various organic Col To acquire knowled and Polycyclic Aron upderstanding abo	dge of the rearrangements and Metallocenes, Nonbenzenoid Aromatics					
	 Students will: Gets a general une applications Will have knowled Will be able to idea understanding of Compounds Able to understan 	derstanding of the essential organometallic compounds and their ge about oxidation and reduction reaction of organic compounds. ntify the rearrangement occurring in a given reaction and Gets a genera Metallocenes,Nonbenzenoid Aromatics and Polycyclic Aromatic d About one group and two group disconnections . principle of complex synthesis					

Unit	Syllabus	Periods
UNIT - I	Organometallic Reagents Principle, preparations, properties and applications of the following in organic synthesis with mechanistic details. Group I and II metal organic compounds Li, Mg, Hg, Cd, Zn and Ce Compounds. Transition metals Cu, Pd, Ni, Fe, Co, Rh, Cr, and Ti compounds. Other elements S, Si, B and I compounds.	15
UNIT - II	Oxidation Introduction, Different oxidative processes. Hydrocarbons-alkenes, aromatic rings, saturated C-H groups (activated and unactivated) alcohols, diols, aldehydes, ketones, ketals and carboxylic acids. Amines, hydrazines, and sulphides. Oxidations with ruthenium tetraoxide, iodobenzenediacetate and thallium. (III) Nitrate. Reduction Introduction, Different reductive processes. Alkanes, alkenes, alkynes, and aromatic rings. Carbonyl compounds-aldehydes, ketones, acids and their derivatives. Epoxides. Nitro, nitroso, azo and oxime groups. Hydrogenolysis.	15
UNIT - III	Rearrangement General mechanistic considerations-nature of migration, migratory aptitude, memory effects. A detailed study of the following rearrangements. Pinacol-pinacolone, Wagner-Meerwein, Demjanov, Benzil-Benzillic acid. Favorskii, Arndt- Eistert synthesis, Neber, Beckmann, Hoffmann, Curtius, Schmidt, Baeyer- Villiger, Shapiro reaction. Metallocenes,Nonbenzenoid Aromatics and Polycyclic Aromatic Compounds General consideration. Synthesis and reactions of some representative compounds. (Tropone, tropolone, azulene, ferrocene, phenanthrene and fluorine).	15
UNIT - IV	Disconnection Approach An introduction to synthons and synthetic equivalents. Disconnection approach, functional group inter-conversions, the importance of the order of events in organic synthesis, one group C-X and two group C-X disconnections, chemoselectivity, reversal of polarity, cyclisation reaction, amine synthesis. Protecting Groups Principle of protection of alcohol, amine, carbonyl and carboxyl groups. One Group C-C Disconnections Alcohols and carbonyl compounds, regioselectivity. Alkene synthesis, use of acetylenes and aliphatic nitro compounds in organic synthesis. Two Group C-C Disconnections Diels-Alder Reaction, 1,3-difunctionalised compounds, $\alpha\beta$ - unsaturated carbonyl compounds, control in carbonyl condensations, 1,5- difunctionalised compounds. Micheal addition and Robinson annelation.	15

	UNIT - V	Ring Synthesis Saturated heterocycles, synthesis of 3-, 4-, 5- and 6- membered rings aromatic hetereocycles in organic synthesis. Synthesis of Some Complex Molecules Application of the above in the synthesis of following compounds : Camphor, Longifoline, Cortsone, Reserpine, Vitamin D, Juvabione, Aphidicolin and Fredericamycin A.	
--	----------	---	--

REFERENCE BOOKS:

- Modern Synthetic Reactions. H.O. House, W.A. Benjamin.
- Some Modern Methods of Organic Synthesis, W. Carruthers, Cambridge Univ. Press.
- Advanced Organic Chemistry, Reactions Mechanisms and Structure, J. March. John Wiley.
- Principles of Organic synthesis, R.O.C. Norman and J.M. Coxon, Blackie Academic & Professional.
- Advanced Organic Chemistry Part B.F.A. Carey and R.J. Sundberg Plenum Press.
- Rodd's Chemistry of Carbon Compounds. Ed. S. Coffey, Elsevier.
- Designing Organic Synthesis, S. Warren. Wiley. Page 20 of 33 Organic Synthesis-Concept, Methods and Starting Materials, J. Fuhrhop.
- Some Modern Methods of Organic Synthesis. W. Carruthers, Cambridge Univ. Press.
- Modern Synthetic Reactions H.O. House, W.A Benjamin.
- Advanced Organic Chemistry : Reactions, Mechanisms and Structure, J. March. Wiley.
 Principles, of Organic Chemistry Part B, F.A. Carey and R.J. Sundberg, Plenum Press.

Noch

Disconnection Approach: Ameta, Punjabi, Ameta, Jain, Sadguru Publications

2 Ann

all a

School of Basic and Applied Sciences

Class Semester/Year		M.Sc. Chemistry (Final)		
		ll Year		
Subject & S	Subject Code	Chemistry - MCHEM20Y206		
Paper		ELECTIVE PAPER-VI (Group-II): Heterocyclic Chemistry and Chemistry of Natural Products		
Max. Marks	5	100		
Credit	Total Credits			
L T P 4 0 0	4			
me • To flav • At • Wi	dicinal applicati impart advance onoids,Prostag ourse Outcome the end of the c Il be familiar wit	ed knowledge of Plant Pigments ,Biosynthesis of landis,Pyrethroids and Rotenones.		
 Ac he Wi 	quire knowledge terocyclic comp ill be familiar wit	e of Synthesis and reactivity of fused, six membered and smaller		
St • Ar • Ac • Ev m • U st • H	udents will: nalyze the aroma cquire knowledg valuate the hete olecules and na nderstand the cl eroids, alkaloids aving a clear un	g Outcomes (SLO): atic and nonaromatic heterocyclic compounds. e of Synthesis and reactivity of heterocyclic compounds. rocyclic reactions based on the influence of the substituents on substrate ture of solvent and the parametric conditions. nemistry, degradation, synthesis and biosynthesis of natural products like s, terpenoids. derstanding of Plant Pigments ,Biosynthesis of glandis,Pyrethroids and Rotenones.		

Unit	Syllabus	Period
UNIT - I	Nomenclature of Heterocycles Replacement and systematic nomenclature (Hantzsch- Widman system) for monocyclic fused and bridged heterocycles. Aromatic Heterocycles General chemical behaviour of aromatic heterocycles, classification (structural type), criteria of aromaticity (bond lengths, ring current and chemical shifts in 1H NMR-spectra. Empirical resonance energy, delocalization energy and dewar resonance energy, diamagnetic susceptibility escalations). Heteroaromatic reactivity and tautomerism in aromatic heterocycles Strain-bond angle and torsional strains and their consequences in small ring heterocycles. Conformation of six-membered heterocycles with reference to molecular geometry, barrier to ring inversion, pyramidal inversion and 1,3-diaxial interaction stereo-electronic effects, anomeric and related effects, Attractive interactions-hydrogen bonding and intermolecular nucleophilicelctrophilic interactions.	
UNIT - II	HeterocyclicSynthesisPrinciplesofheterocyclicsynthesisinvolingcyclizationreactionsandcycloadditionreactions.Small Ring HeterocyclesThree-memberedandfour-memberedheterocycles-synthesisandreactionsofaziridines,oxiranes,thiranes,azetidines,oxetanesandthietanes.Benzo-Fused Five-MemberedHeterocyclesSynthesisandreactionsincludingmedicinalapplicationsofbenzopyrroles,bezofuransandbenzothiophenes.Meso-ionic HeterocyclesGeneralclassification,chemistryofsomeimportantmesoionicheterocyclesoftype-AandBandtheir applications.diadata	15
JNIT - III	Six-Membered Heterocycles with one Heteroatom Synthesis and reactions of pyrylium salts and pyrones and their comparison with pyridinium&thiopyrylium salts and pyridones. Synthesis and reactions of quinolizinium and benzopyrylium salts, coumarins and chromones Six Membered Heterocycles with Two or More Heteroatoms Synthesis and reactions of diazones, triazines, tetrazines and thiazines. Seven-and Large-Membered Heterocycles Synthesis and reactions of azepines, oxepines, thiepines, diazepinesthiazepines, azocines, diazocines, dioxocines and dithiocines. Heterocyclic Systems Containing P, As, Sb and B Heterocyclic rings containing phosphorus : introduction, nomenclature, synthesis and characteristics of 5- and 6-membered ring systems phosphorinanes, phosphorines, phospholanes and phospholes.	15

UNIT - IV	Terpenoids and CarotenoidsClassification, nomenclature, occurrence, isolation, general methods of structure determination, isoprene rule. Structure determination, stereochemistry, biosynthesis and synthesis of the following representative molecules Citral, Gerniol α- Terpeneol, Menthol, Farnesol, Zingiberene, Santonin, Phytol, Abietic acid and β-Carotene.AlkaloidsDefinition, nomenclature and physiological action, occurrence, isolation, general methods of structure elucidation, degradation, classification based on nitrogen heterocyclic ring, role of alkaloids in plants. Structure, stereochemistry, synthesis and biosynthesis of the following 'Ephedrine', (+)- Conine, Nicotine, Atropine, Quinine and Morphine.SteroidsOccurrence, nomenclature, basic skeleton, Diels hydrocarbon and stereochemistry, Isolation, Structure determination and synthesis of Cholesterol, Bile acids, Androsterone, Testosterone, Estrone, Progestrone, Aldosterone, Biosynthesis of Steroids.	15
UNIT - V	 Plant Pigments Occurrence, nomenclature and general methods of structure determination. Isolation and synthesis of Apigenin, LuteolinQuercetin, Myrcetin, Quercetin 3- glucoside, Vitexin, Diadzein, Butein, Aureusin, Cyanidin-7arabinoside, Cyanidin, Hirsutidin, Biosynthesis of flavonoids: Acetate pathway and Shikimic acid pathway. Porphyrins Structure and synthesis of Haemoglobin and Chlorphyll Prostaglandis Occurrence, nomenclature, classification, biogenesis and physiological effects. Synthesis of PGE2 and PGF2α. Pyrethroids and Rotenones Synthesis and reactions of Pyrethroids and Rotenones. 	15

REFERENCE BOOKS :

°\$

- Heterocyclic Chemistry Vol. 1-3, R.R. Gupta, M. Kumar and V.Gupta, Springer Verlag.
- The Chemistry of Heterocycles, T. Eicher and S. Hauptmann, Thieme.
- Heterocyclic Chemistry J.A. Joule, K. Mills and G.F. Smith, Chapman and Hall.
- Heterocyclic Chemistry, T.L. Gilchrist, Longman ScietificTechinal.
- Contemporary Hetrocyclic Chemistry, G, R. Newkome and W.W. Paudler, Wiley-Inter Science.
- An Introductiion to the Heterocyclic Compounds, R.M. Acheson, John Wiley.
- Comprehensive Heterocyclic Chemistry, A.R. Katritzkyand C.W. Rees, eds.Pergamon Press
- Natural Products : Chemistry and Biological Significance, J. Mann, R.S. Davidson, J.B. Hobbs, D.V. Banthrope and J.B. Harborne, Longman, Essex.
- Organic Chemistry : Vol. 2 IL. Finar, ELBS
- StereoselectiveSynthesis : A Practical Approach, M. Ngoradi, VCH.
- Rodd's Chemistry of Carbon Compounds, Ed. S. Coffey, Elsevier.
- Chemistry, Biological and Pharmacological Properties of Medicinal Plants from the Americas, Ed. Kurt Hostettmann, M.P. Gupta and A. Marston. Harwood Academic Publishers.
- Introduction to Flavonoids, B.A. Bohm. Harwood Academic Publishers.
- New Trends in Natural Product Chemistry, Ata-ur-Rahman and M.L. Choudhary, Harwood Academic Publishers.
- Insecteides of Natural Origin, SukhDev, Harwood Academic Publishers.
- Chemistry of Natural Products: B. C. Joshi, S. C. Ameta, Himanshu Publication

Noch

Class				M.Sc. Chemistry (Final)
Semester/Year				ll Year
Subject & Subject Code				Practical Chemistry - MCHEM20Y209
Paper				Practical (Compulsory for all)
Max. Marks				100
Credit Total Credits		Total Credits		
L	т	Ρ	4	
0	0	4		

PRACTICALS

- Determination of copper by diethyl dithiocarbamate extraction by estimation by Spectrophotometry
- Analysis of oils and fats Saponification and acid value
- Determination of benzoic acid in soft drinks by titrimetry
- AAS determination of heavy metal content (Fe, Pb, Cr and Cd) in water.
- Analysis of water COD, DO, BOD.
- Analysis of water Alkalinity and hardness.
- Analysis of heavy metal ion in fruit juice
- Determination of calcium in water and milk by flame photometry.

Nede A ANY

Class				M.Sc. Chemistry (Final)
Semester/Year			/ear	II Year
Subje	Subject & Subject Code			Practical Chemistry - MCHEM20Y210
Pape	Paper			Inorganic Chemistry Practical
Max.	Max. Marks			100
Credit		t	Total Credits	
L	Т	Ρ	4	
0 (0	4		

PRACTICALS

Inorganic Chemistry Preparation

Preparation of selected inorganic compounds and their study by IR, electronic spectra, Moss Bauer. ESR and magnetic susceptibility measurements. Handling of air and moisture sensitive compounds involving vacuum lines.

Selection can be made from the following :

- 1. Sodium amide. Inorg. Synth., 1946, 2, 128.
- Synthesis and thermal analysis of group II metal oxalate hydrate. J. Chem. Ed., 1988, 65, 1024.
- 3. Atomic absorption analysis of Mg and Ca.
- 4. Trialkoxyboranes-IR and NMR spectra.
- 5. PhBceDichlorophenylborane Synthesis in vacuum line.
- Preparation of Tin (IV) iodide, Tin (IV) chloride and Tin (II) iodide, Inorge, Synth., 1953, 4.119. Relative Stability of Tin (IV) and Pb (IV).
- Preparation of ammonium hexachlorostannate (NH4)₂SnCl₆, ammoniumhexachlorophlumbate (NH4)₂PbCl₆.
- 8. Hexa-bis (4,nitrophenoxy) cyclotriphosphazene.
- 9. Synthesis of trichlorodiphenylantimony (V) hydrate. Inorg. Synths., 1985, 23, 194
- 10. Sodium tetrathionate Na₂S4O6.
- 11. Metal complexes of dimethyl sulfoxide (IR) : CuCl₂.2DMSO, PdC_{l2}. 2DMSO, RuCl₂. 4DMSO. J.Chem. Educ., 1982, 59, 57.
- 12. Synthesis of metal acethylacetonate : Magnetic moment, IR, NMR, Inorg. Synths, 1957, 5, 130, 1963, 1, 183.
- 13. Bromination of Cr (acac)₃. J. Chem. Edu., 1986, 63, 90.
- 14. Magnetic moment of Cu (acac)₂H2O.
- 15. Cis and Trns [Co(en)2Cl₂]+.
- 1ø. Separation of optical isomer of cis-[Co(en)2Cl2]Cl.J. Chem. Soc., 1960. 4369.

lugh

- 17. Ion exchange separation of oxidation state of vanadium. J. Chem. Educ. 18. Determination of Cr (III) complexes. [Cr(H₂O)₆]NO₃.3H₂O, [Cr(H₂O)4Cl₂]Cl.2H2O,
- 19. Preparation of N, N bis (salicycladehyde) ethylenediamine, silane H₂. Co(Silane) J. Chem. [Cr(en)3]Cl₃, Cr(acac)₃. Inorg. synths., 1972, 13, 184.
- 20. Preparation of Fe(II) chloride (use it as Friedel-Craft chlorination source) J. Org. Chem.,
- 1978, 43, 2423; J. Chem. Edu., 1984, 61, 645; 1986, 63, 361. 21. Reaction of Cr(III) with a multidentate ligand; a kinetics experiment (visible spectra Cr-
- EDTA complex) J.A.C.S., 1953, 75, 6570.
- 22. Preparation and use of Ferrocene. J. Chem. Edu. 1966, 43, 73; 1976, 53, 730.
- 23. Preparation of copper glycine complex-cis and transbis (glycinato Copper (II). J. Chem. Soc. Dalton, 1979, 1901, J. Chem. Edu., 1982, 59, 1052.
- 24. Preparation of phosphine Ph₃P and its transition metal complexes.
- 25. Any other experiment such as conversion of p-xylene to terephtalic acid catalyzed by CoBr₂ (homogeneous catalysis).
- 26. Preparation of [Co(phenathroline-5,6 quinone)].

27. Spectrophotometric Determinations

- a. Manganese/Chromium/Vanadium in steel sample.
- b. Nickel/molybdenum/tungston/vanadium/uranium by extractive pectrophotometric method.
- c. Fluoride/nitrite/phosphate.
- d. Zirconium-alizarin Red-S complex : Mole-ratio method.
- e. Copper-Ethylene diaminecomplex :Sloperatio method.
- f. Iron-phenanthroline complex : Job's method of continuous variations

28. Flame Photometric Determinations.

- a. Sodium and potassium when present together.
- b. Lithium/Calcium/barium/strontium.
- c. Cadmium and magnesium in tap water.
- 29. Quantitative determinations of a three component mixture : One Volumetrically and two gravimetrically :
 - a. Cu+2, Ni+2, Zn+2
 - b. Cu+2, Ni+2, Mg+2

30. Chromatographic Separations

- a. Cadium and zinc
- b. Zinc and magnesium.
- c. Thin-layer chromatography-separation of nickel, manganese, cobalt and zinc.Determination of Rf values.
- d. Separation and identification of the sugars present in the given mixture of glucose, fructose and sucrose by paper chromatography and determination of Rf values.

Bh ridh

Class				M.Sc. Chemistry (Final)
Semester/Year			′ear	II Year
Subject & Subject Code			Subject Code	Practical Chemistry - MCHEM20Y211
Paper				Organic Chemistry Practical
Max. Marks			6	100
Credit Total Credits		Total Credits		
L	т	Ρ	- 4	
0	0	4		

PRACTICALS

Organic Chemistry

Qualitative Analysis

Separation, purification and identification of the components of a mixture of three organic compounds (three solids or two liquids and one solid or two solids and one liquid), using TLC for checking the purity of the separated compounds, chemical analysis, IR, PMR and mass spectral data.

Multi-step Synthesis of Organic Compounds

The exercise should illustrate the use of organic reagents and may involve purification of the products by chromatographic techniques.

Photochemical reaction

Benzophenone --> Benzpinacol --> Benzpinacolone

Beckmann rearrangement : Benzanilide from benzene

Benzene ---> Benzophenone --> Benzphenoneoxime --> Benzanilide

Benzilic acid rearrangement : Benzilic acid from benzoin

Benzoin → Benzil → Benzilic acid

Synthesis of heterocyclic compounds

Skraup synthesis : Preparation of quinoline from aniline

Fisher Indole synthesis: Preparation of 2-phenylindole from phenylhydrazine.

Enzymatic synthesis

Enzymatic reduction : reduction of ethyl acetoacetate using Baker's yeast to yield enantiomeric excess of S(+) ehtyl-3-hydroxybutanoate and determine its optical purity.

Biosynthesis: ethanol from sucrose.

Synthesis using microwave : Alkylation of diethyl malonate with benzyl chloride.

Nidw

Synthesis using phase transfer catalyst : Alkylation of diethyl malonate or ethyl acetoacetate Extraction of Organic Compounds from Natural Sources

1. Isolation of caffeine from tea leaves.

2. Isolation of casein from milk (the students are required to try some typical colour reactions of proteins). 3. Isolation of lactose from milk (purity of sugar should be checked by LC and PC and Rf values reported). 4. Isolation of nicotine dipicrate from tobacco. 5. Isolation of cinchonine from cinchona bark.

- 6. Isolation of piperine from black pepper.
- 7. Isolation of lycopene from tomatoes.
- Isolation of β-carotene from carrots.

9. Isolation of oleic acid from olive oil (involving the preparation of complex with urea and separation of linoleic acid).

10. Isolation of eugenol from clove.

11. Isolation of (+) limonine from citrus rind.

Paper Chromatography

Separation of identification of the sugars present in the given mixture of glucose, fructose and sucrose by paper chromatography and determination of Rf values.

Spectroscopy

Identification of organic compounds by the analysis of their spectral data (UV, IR, PMR, CMR & MS) Spectrophotometric (UV/VIS) Estimations Amino acids Proteins Carbohydrates Cholesterol Ascorbic acid Aspirin Caffeine.

du prohi ful

Class				M.Sc. Chemistry (Final)
Seme	Semester/Year			ll Year
Subj	Subject & Subject Code			Practical Chemistry - MCHEM20Y212
Pap	Paper			Physical Chemistry Practical
Max	Max. Marks			100
С	Credit Total Credits			
L	т	Ρ	4	
0	0	4		

PRACTICALS

Physical Chemistry

Number of hours for each experiment: 3-4 hours. a list of experiments under different headings are given below. Typical experiments are to be selected from teach type.

(A) Thermodynamics

i. Determination of partial molar volume of solute (e.g. KCI) and solvent in a binary mixture. ii. Determination of the temperature dependence of the solubility of a compound in two solvents having similar intromolecular in interactions (benzoic acid in water and in DMSO-Water mixture and calculate the partial molar heat of solution.

(B) Spectroscopy

i. Determination of pKa of an indicator (e.g. methyl red) in (a) aqueous and (b) micellar media. ii. Determination of stoichiometry and stability constant of Ferricisothiocyanation complex ion in solution. iii. Determination of rate constant of alkaline bleaching of Malachite green and effect of ionic strength on the rate of reaction.

(C) Polarography

i. Identification and estimation of metal ions such as Cd2+, Pb2+, Zn2+, and Ni+2 etc. polarographically.

ii. Study of a metal ligand complex polarographically (using Lingane's Method).

(D) Chemical Kinetics

i. Determination of rate constant and formation constant of an intermediate complex in the reaction of Ce(IV) and Hypophosphorous acid at ambient temperature.

ii. Determination of energy and enthalpy of activation in the reaction of KMnO4 and benzyl alcohol in acid medium.

iii. Determination of energy of activation of and entropy of activation from a single kinetic run. iv.

Nich

Kinetics of an enzyme catalyzed reaction.

(E) Electronics

This lab course will have theory as well as practical and the lectures shall be delivered during lab hours.

Basic Electronics: Notations used in the electronic circuit, study of electronic compounds and colour codes. Conversion of chemical quantities into electronic quantities. transducer, illustration with electrodes, thermocouples and thermistors. Passive components: Resistors, capacitors and inductors with some emphasis on solid state properties of materials. Net works of resistors. Thevenin's theorem, superposition theorem, loop analysis, RC circuits, LR Circuits, LCR circuits. Illustration of the use of circuits in NQR spectroscopy, Massbauer spectroscopy cyclic voltammetry and in power supplied as filter circuits.

Active components: Introduction to ordinary diodes and Zener diode with some emphasis on p-n junction as a solid state property. Use of diode as rectifiers, clipping and clamping circuits. Power supplies. Transistors : An extension of p-n-p and n-p-n transistors. Characteristics of transistors, hybrid parameters; transistor circuits as amplifiers, high impedance (preamplifier) circuits. Darlinction pairs, differential amplifiers.

Operational Amplifiers: Ideal characteristics; inverter, summer, integrator, differentiator, voltage follower, illustrative use of operational amplifiers. Introduction to Fourier transformation in instrumentation. List of Experiments in electronics (Do at least five experiments from this section)

- 1. (a) To plot the diode characteristics and find its dynamic resistance and cut in voltage.
 (b) To plot the characteristics of transistor used as a diode and compare the results with those
 - of (a)
- 2. (a) To plot the diode characteristics and find its dynamic resistance and cut in voltage.
 - (b) To plot the characteristics of transistor used as a diode and compare the results with those of (a) wave form.
- 3. To implement a diode damper circuit which damps the positive peak of the input voltage to (a) Zero voltage and
 - (b) a given voltage. Verify the performance.
- 4. (a) To plot the characteristics of an NPN transistor in CE configuration.
- (b) To find the h-parameter of the transistor from the characteristics.
- 5. (a) To plot the characteristics of an NPN transistor in CB configuration.
 - (b) To find the h-parameter of the transistor from the characteristics and compare it with the results of experiment No. 6.
- 6. (a) To plot the drain and transfer characteristics of a JEET in CS configuration.
 - (b) To find out the pinch off voltage, maximum drain to source saturation current and the trans conductance.
- 7. To obtain the frequency response of an RC coupled amplifier and estimate the bandwidth.
- 8. (a) To plot the characteristics of Zener diode and find its dynamic resistance under reverse biased condition. To use zener diode for a voltage regulation.
 - (i) Plot the line regulation curve.
 - (ii) Plot the load Regulation curve.
- 9. (a) To wire a Half wave Rectifier circuit using diode and measure the rms voltage, de voltage and to find Ripple factor.
 - (b) To study the performance of half way and full wave doubler circuits.

10. To plot the characteristics of UJT and find the peak voltage, peak current and valley voltage and use as a relaxation oscillator.

Nigh